
J .  Fluid Mech. (1967), vol. 30, part 4, p p .  785-803 

Printed i n  Great Britain 

7 85 

The equilibrium and stability of a translating 
cavity in a liquid 

By ANTHONY ELLERt AND H. G. FLYNN 
Acoustical Physics Laboratory, Department of Electrical Engineering, 

University of Rochester, Rochester, New York 14627 

(Received 25 January 1967 and in revised form 26 June 1967) 

A strong sound field in a liquid may generate small cavities that move rapidly 
through the liquid. This paper is an analysis of the equilibrium states, and the 
conditions for their stability, of a cavity in translational motion through an in- 
viscid, incompressible liquid. A principal conclusion is that translating cavities 
have a stable size and shape for a wide range of conditions. The equilibrium shape 
of a stable cavity is approximately an oblate spheroid. It is also found that the 
presence of translational motion contributes an outward dynamic pressure that 
tends to enlarge the cavity. As a result, the equilibrium radius of a translating 
cavity is greater than the equilibrium radius of the same cavity at  rest. 

1. Introduction 
A strong sound field in a liquid may generate small cavities that dart about in 

rapid motion through the liquid. In  this paper a study is made of the equilibrium 
size and shape and the stability of a cavity in translational motion. A principal 
conclusion is that translating cavities have a stable size and shape for a wide 
range of conditions. 

A translating cavity will be shown to differ from a stationary cavity primarily 
in two respects: the shape of the cavity is deformed, and the average pressure 
in the liquid surrounding the cavity is less than the hydrostatic pressure at  in- 
finity. This reduction of pressure tends to enlarge the cavity. As a result, the 
equilibrium radius of a translating cavity is greater than the equilibrium radius 
of the same cavity a t  rest. 

The motion of a body through a fluid differs from the motion of the same body 
in free space in one important respect. When a body moves through the fluid, the 
fluid in the neighbourhood of the body must also move; this fluid motion is 
directly related to the motion of the body. Therefore, dynamic quantities such 
as kinetic energy and momentum consist of two contributions, the kinetic energy 
and momentum of the body itself, and the kinetic energy and momentum of the 
fluid flow associated with the motion of the body. It is often convenient to account 
for the dynamic contribution of the fluid by attributing to the body in motion 
a total effective mass which is the sum of the intrinsic mass of the body itself and 
an induced mass arising through the motion of the fluid. For example, a sphere 
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of mass m, volume V and density p’ = ml V ,  moving through an incompressible 
liquid of density p, has an induced mass of 4pV and, therefore, a total effective 
mass .M = m + 4pV = (p’ + 4p) V.  The concept of induced mass is discussed in 
greater detail by Birkhoff (1950). 

The motion of cavities through a liquid represents the special case in which the 
intrinsic mass (in this case the mass of whatever gas may be present in the cavity) 
is negligible, and the total mass can be assumed to be given by the induced mass 
alone. By means of this concept of induced mass it is possible to speak of such 
dynamic quantities as the kinetic energy and momentum of a cavity, in spite of 
the fact that a cavity has negligible intrinsic mass. Thus, an expression like the 
‘momentum of a cavity’ is an abbreviated way of referring to the momentum of 
the fluid in the neighbourhood of the cavity. 

Translation of cavities in an intense sound field has been described by several 
authors. At times the velocity of translation is quite large. For example, Willard 
(1953) observed cavities moving a t  velocities up to 1000 cmlsec through the focal 
region of a focused travelling wave, and Barger (1964) recently observed a cavity 
moving outward from the pressure antinode a t  the centre of a spherical standing 
wave at  a velocity of 125 cmlsec. 

Much of the present knowledge of translating cavities comes not from acoustic 
cavitation but, rather, from studies of gas bubbles rising through a liquid. 
Haberman & Morton (1953) report that rising bubbles have one of three charac- 
teristic shapes. Very small bubbles remain spherical; bubbles of intermediate size 
are deformed into an oblate spheroid; and large bubbles form what are known as 
spherical cap bubbles. Hartunian & Sears (1957) observed that the very small 
bubbles rise in a straight, vertical path. In  liquids of low viscosity, however, 
bubbles exceeding a well-defined critical size for each liquid have an unstable 
trajectory, and the rising bubble will oscillate or spiral about the vertical direc- 
tion. The shape of these bubbles is an oblate spheroid. The significant physical 
quantity that determines the shape and path of bubbles in relatively inviscid 
liquids is the Weber number, a dimensionless parameter given by pu2Rlc. 

The problem of translational motion of bubbles has arisen also in studies of 
underwater explosion bubbles. An approximate theory of the dynamics of ex- 
plosion bubbles was worked out by Taylor (1963, pp. 320-36, 337-53), who, in 
order to avoid the complexities resulting from shape distortion, assumed the 
bubble shape to be a sphere. This spherical model predicts that the presence of 
translational motion tends to cushion or oppose collapse of the bubble. In  fact, 
according to the spherical model, an empty cavity cannot contract to zero radius 
as long as there is translational motion. Approximate calculations by Taylor 
indicate that the presence of translational motion can increase the minimum 
radius attained by a pulsating cavity by a factor of 3.3 and decrease by a factor 
of 100 the maximum gas pressure attained during contraction. For this same ex- 
ample Taylor found that the amount of energy radiated as a pressure wave during 
cavity rebound is reduced to one-tenth the amount of energy that would be radi- 
ated if there were no translational motion. 

The present paper consists of an analysis of the equilibrium size and shape of 
a cavity in uniform translational motion through an inviscid liquid. This task 
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will be accomplished by first deriving general equations of motion for the size, 
shape and translational velocity of the cavity. From these equations conditions 
will then be determined for the equilibrium state of a translating cavity and for 
the stability of the cavity size and shape. The stability of the trajectory, which 
was examined by Hartunian & Sears, will not be considered here. A more detailed 
and extensive discussion of the dynamics of translating cavities is available in a 
recent report (Eller 1966). 

2. Equations of motion for a translating cavity 
The analysis is begun by considering a cavity with Some given initial mo- 

mentum, translating in a straight line through an infinite, incompressible and 
inviscid liquid. The hydrostatic pressure Po is considered to be constant in time 
and uniform in space throughout the liquid, and no other external forces exist. 

/ 

FIGURE 1. Co-ordinate system for a translating cavity. 

It may be assumed that at  some previous time an external force, due either to 
gravity or a sound field, did exist and gave the cavity its initial momentum. 
The present analysis begins when the cavity enters a region in which no such 
external forces exist, and the particular means by which the cavity acquired its 
initial momentum are not considered. It will be seen that, because both viscous 
forces and external forces are neglected, the translational momentum is a con- 
stant. 

The surface of the cavity is treated as a free boundary whose shape and posi- 
tion are to be determined; it is noted that the shape is not necessarily a sphere. 
However, it is assumed that the shape of the cavity is symmetric about the direc- 
tion of translation. The cavity may contain gas, but the density of the gas is 
much less than the density of the liquid so that the kinetic energy of the gas may 
be neglected. The surface tension of the liquid is included. 

We shall assume for the present that the position of the cavity surface and the 
translational velocity are functions of time. The position of the cavity surface is 
given by the function r = r8(8, t ) ,  or F(r,  8, t )  = r - rs = 0, where r and 8 arc3 spheri- 
cal co-ordinates in a co-ordinate system whose origin 0 is located at  the centre of 
the cavity, a distance c(t) from some fixed reference point 0'. The centre of the 
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cavity moves in the z direction with a velocity .$ = u(t) with respect to the rest 
frame, as indicated in figure 1. The co-ordinate system (0, r ,  0 )  attached to the 
centre of the cavity is also moving with velocity u(t) .  At first it may appear that 
the problem is treated in an accelerating co-ordinate system that would require 
the inclusion of new forces. However, the moving co-ordinate system is used only 
to describe the cavity shape; the dynamics of the motion will be described with 
respect to the inertial, fixed co-ordinate system. Thus, in the expression &pvz for 
the kinetic energy of a fluid particle, the velocity v at a point in the liquid is 
measured not with respect to the moving frame, but in the rest frame. Similarly, 
the negative gradient of the velocity potential q4 gives the fluid velocity in the rest 
frame. 

The function r, may be expanded in a series of Legendre polynomials as 

m 

r,(e, t )  = R( t )  + c cn(t) P,(COS e). 
n=2 

In this expression R is the coefficient of the zero-order Legendre polynomial 
Po = 1. A term clPl is identically zero by the choice of origin and does not appear. 
Such a term would describe translation of the cavity with respect to a fixed 
origin; this motion is accounted for here by allowing the origin of the co-ordinate 
system to move with the centre of the cavity. It is convenient to write this ex- 
pansion as 

In  the following analysis we shall &-st solve Laplace's equation for the velocity 
potential $. Next, the kinetic energy T and the potential energy U will be ex- 
pressed as functions of R, fi, xn, in and the translational velocity u. Finally, the 
Lagrangian of the system is given by L = 27 - 77, and equations of motion for the 
cavity are found by applying Lagrange's equations of motion to this Lagrangian. 

Solution of Laplace's equation 

The motion of the incompressible liquid is assumed to be irrotational and, there- 
fore, may be described by a velocity potential such that - Vq4 = v. The potential 
4 is a solution of Laplace's equation that vanishes at infinity and is represented 
bv the series 

(3  1 

The time-dependent coefficients R"+2(t) b,(t) have been written in this factored 
form for the sake of convenience. The problem here is to  evaluate the coeffi- 
cients b, as functions of R, k, x,, xn and u. This goal may be accomplished once 
the normal velocity at the cavity boundary is specified. 

The normal velocity of a fluid particle a t  the surface is the sum of the normal 
velocity in the moving co-ordinate system with origin at  the centre of the cavity, 
plus a term due to the translation of the cavity with velocity u. The normal 
velocity in the moving system is (ar,/at), i,. n where (ar,/at), is the velocity of 
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the surface in the radial direction at  some fixed angle 8. From (1) one has 
(ar,/at), = fif + Rf, where f indicates the time derivative off with 0 fixed and 
is given by f = Ex, P,. The contribution of translation to the normal velocity 
is ui,. n. Therefore, the normal velocity at  the surface is 

v.n  = -V$ .n  = (fif+Rf)i,.n+ui,.n. (3) 

The unit normal vector to the surface F(r, 8, t )  = 0, pointing outward from the 
centre of the cavity, is 

The quantity V$, appearing in (3), may be calculated from (2). Then, with the 
relations 

i,. i, = cos 0 = Pl and i, . i, = -sin 0 = aPl/M, 

equations (3) and (4) yield 

( 5 )  
(n+l)b,P, b aP af af apl 2 _____ + C L 2 - = f i j ’ + R f + u P l - - - -  

n=O ,=lfn+3 ae ae f ae ae * 

Equation ( 5 )  determines the coefficients b, as functions of the variables R, fi, 
x,, $, and u. It is seen from ( 5 )  and ( 2 )  that b, and q5 are linear functions in &, u 
and $,, though not in R and x,, and may be written in the general form 

where b,, and q5i are functions of R and x,. The general symbol q represents any of 
l?, u or xn according to the correspondence qo = A, ql = u and q, = 5, (n 3 2). 
It is used to give the co-ordinates a uniform notation and does not represent a 
new choice of co-ordinates. The term $i refers to the contribution of qi to the 
total potential $. For example, Ql$l = u $ ~  is the contribution of translation 
t o  $. From (Z), (6) and ( 7 ) )  $i is given by 

The coefficient bni refers to the contribution of qi to the nth multipole of $. For 
example, bll(R3Pl/r2) u is the contribution of translation to the dipole field. 

The b,, coefficients can be found from (5) and (6) as a power series in all of the 
x, by means of an iteration procedure. The validity of this procedure requires 
all x, to be small enough that the inequality (r,  - R)/R < 1 be satisfied for all 
values of the angle 8. It is convenient, then, for book-keeping purposes to assume 
that the x, are small quantities of order of magnitude e,  written x, = O(e) .  
Products of the form x,xk will then be of order e2, and so on. The bni coefficients 
are constructed by first finding the terms in bni of zero order in e .  This result is 
then used to find the terms of order e .  Higher-order terms are found in a similar 
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way. Details and results of this calculation are given by Eller (1966). In the present 
paper explicit results are needed only for b,, and b31, which are given below 
through the number of terms needed in later calculations : 

= ~ - ~ ~ 2 + 0 ~ 5 ~ 2 8 ~ ~ + 0 ~ 5 1 8 4 ~ $ + 0 ~ 5 2 1 6 ~ ~ - O ~ 5 1 4 3 ~ 2 ~ ~ + .  .. 
+0~1091x~+0~2150x2x$+.  . ., (9) 

( 10) b31 = & ~ 2 - & ~ 4 +  0 ( e 2 ) .  

The solution of Laplace's equation is now expressed formally as q5 = Xqtq5i 
with q5i given by (8). This solution is used next to obtain an expression for the 
kinetic energy that results from the motion of the cavity. 

Kinetic energy 

The kinetic energy of the system is given by 
n n 

where p is the density of the liquid, dQ is the volume element in the liquid, and 
dS is the element of area on the cavity surface. A similar surface integral over a 
surface at infinity has no contribution because the integrand q5V$ behaves as 
r3 at infinity, and the integral vanishes. Using (7), one may write 

where 

The kinetic energy is seen to be a quadratic function of the rates of change qi. The 
quantities Mii will be called generalized masses. 

In  the following analysis an explicit value is needed only for the generalized 
mass Mll, which is the induced mass for translation of a cavity with arbitrary 
but fixed values of R and x,. M,, is given by 

M,, = -pJ$,Vq5,.ndS. 

It can be shown that M,, may be written as 

MI,  = 4npR3b1,-pV. 

V is the volume of the cavity and is given by 
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Equation (13) is a familiar result (Taylor 1928) for the induced mass of transla- 
tion of a body of fixed shape moving through a perfect liquid and holds both for 
the motion of a solid body as well as for the motion of a cavity. The difference 
between these two cases is that the total mass of a solid consists of this induced 
mass plus the intrinsic mass, while the intrinsic mass of the cavity may be 
neglected. 

It is convenient to define the ratios 

and 

The volume ratio w is the ratio of the cavity volume to the volume of a sphere 
with radius R ,  and the quantity m is the ratio of the induced mass of translation 
of the cavity to that of a sphere with radius R. The ratios w and m are functions 
only of the cavity shape, that is, functions of x, but not of R, and can be expanded 

= 1*0000 + 0*6000~$ + 0.4286~; + 0.3333~; + . . . + 0-0571~,3 

+ 0 ~ 1 1 4 3 x 2 ~ ~ + 0 ~ 1 7 1 4 ~ ~ ~ 4 + 0 * 0 7 7 9 x ~ ~ 4 + .  . ., (16) 
and 

= 1.0000 - 1.8000~2 + 1.9371~: - 3.0857~2~4 + 2.4632%; + 2.25314 + . . . 
+ 0.5406~$ + 1*0615x2x~ + . . . . (17) 

Potential energy 

The potential energy of the system is given by 

where G is the surface tension of the liquid, A is the cavity surface area, Po is the 
hydrostatic pressure in the liquid far from the cavity, andp,, is the pressure of the 
gas in the cavity. The f i s t  two terms represent the work needed to  introduce a 
cavity of volume V and surface area A into the liquid. The third term represents 
the work to fill the cavity with gas at pressure p g  and volume V from some refer- 
ence volume V,. It is assumed that the gas pressure is a function only of the volume 
of the cavity. The area is given by 
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It is convenient to define the ratio 

which is the ratio of the cavity surface area to that of a sphere with radius R. 
s is calculated by expanding the radical in the integrand of (19)  in a Taylor series 
and then integrating to give 

= 1.0000 + 0-8000~: + 1 * 0 0 0 0 ~ ~  + 1.2222~: + . . . 
- 0.2571~;- 1 * 6 8 3 1 ~ : ~ : -  . . . . (20)  

The three ratios m, s and w are important variables used throughout the analy- 
sis. They serve as a measure of the departure of a deformed cavity from a sphere, 
and each ratio has the value unity when the cavity shape is a sphere. 

The equations of motion 

The kinetic and potential energies have now been expressed as functions of 
R, I?, x,, in and u. The variables R, x, and c, the position of the centre of the 
cavity, thus serve as generalized co-ordinates for this problem, and their time 
derivatives&, gn, g = u, as generalized velocities. The Lagrangian for this problem 
is given by L = T- U ,  and equations of motion are obtained by applying 
Lagrange's equations to this Lagrangian. 

Lagrange's equations of motion are, in general, 

(21)  
d aL aL a a~ aT au 
dt ( a g )  aqi at (aq,)  aq,+G = 0, 
- - --=-  - -- 

where qi represents any of R, x, or 6. Of particular importance is the fact that the 
co-ordinate 6 does not appear explicitly in the Lagrangian. Consequently, the 
equation for q1 gives d/dt(aT/au) = 0, and the translational momentum, defined 
as 

is a constant of the motion. G is given by means of ( 1  1 )  as 

G aqau (22)  

m m 

G = M,,B + M,,u + M1,iB = M,iqi. 
2 0 

With (ll), the equations of motion are given in general by 

(23) 

3. The equilibrium state of a translational cavity 
Solutions of the equations of motion will now be sought for the case of a cavity 

of constant size and shape, moving with a constant translational velocity. The 
constant values of the co-ordinates and translational velocity will be written 
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Re, x, and u,. Such an equilibrium situation is specified by solutions of (24) with 
R, u and x, held constant. Using (18),  (14),  (15) and (191, we find the equilibrium 
equations for Re 

(25) 
2us 

= __ + (Po -pue) w, 
4 Re 

and for x, 

It is noted here that Re and poe are the equilibrium values of the radius and gas 
pressure of a translating, deformed cavity. They differ from the values of R and 
p g  that would result if the same cavity were at  rest. The momentum of the equi- 
librium cavity is given by (23) and (15) as 

G = M,,ue = $rrpmR:ue. 

If (25) is used to eliminate (Po-poe) from (26), one obtains 

am m a w  

The parameter $, given by 

is known as the Weber number. 
The equilibrium values of x, are determined by (28), which defines a family of 

equilibrium cavity shapes in terms of the Weber number $. Once $ is specified 
and the equilibrium shape is known, the equilibrium radius is related to the 
translational velocity and the gas pressure by (25) and (29). The radius R is the 
coefficient of the zeroth Legendre polynomial Po in the expansion of the position 
of the cavity surface, (1) .  Thus, the equilibrium radius is a kind of average radius 
of the equilibrium cavity. 

Equation (25) indicates that the effect of translational motion is to contribute 
a dynamic pressure equal to pmuz/4w which opposes a positive hydrostatic 
pressure and the pressure due to surface tension, and which tends to enlarge the 
cavity. Two principal objectives of this study of the equilibrium cavity are, f ist ,  
to find the equilibrium values of the shape co-ordinates x,, and second, to exam- 
ine the effects of the dynamic pressure on the equilibrium radius of the cavity. 

$ = p ~ z  Re/V (29) 

The equilibrium shape 

Equilibrium values of x,, as expansions in powers of the Weber number $, have 
been found from (28)  by means of an iteration procedure.The quantities m, s and 
w appearing in this equation are given as functions of x, by (17),  (20) and (16). 
The zero-order term in the expansion of x, is found by considering a stationary 
cavity. In  this case ue and p are both zero, and the left-hand side of (28) vanishes. 
The zero-order values of x, are then given by roots of the zero-order equations 

8 aslax, - (slw) awlax, = 0. 

We see from (20) and (16) that s and w contain no terms linear in xn. As a result, 
the zero-order equations have a solution x, = 0. This sohtion corresponds to the 
well-known result that the equilibrium shape of a stationary cavity is a sphere. 
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A first-order approximation is obtained by keeping terms of order /3 in (28) 
and then solving this set of equations for each x,. Because each x, is at least of 
order p, products of the form xn/3 and x,xk are at  least of order p2 and are omitted 
in this approximation. For example, to first order, equation (28) for n = 2 is 

p( -9/5) = 12(8/5)x2-8(6/5)x2. 

It is found that, to first order in p, the equilibrium shape is described by 
x2 = - (3/16)/3, and x3 = x4 = . . . = 0; this shape is an oblate spheroid. 

0.8 

0.6 

0.2 

0 0.5 1 .o 1.5 2.0 2.5 

Weber number, p = pu:R,/a 

FIUIJRE 2. Equilibrium values of xz and x4 as a function of the Weber number. 

Higher-order approximations are obtained in a similar way. The equilibrium 
values of x, that have been obtained in this manner are 

1 (30) I 
x2 = -0~1875/3-0*04721~2-0~01951/33+. . ., 
x4 = 0*03612p2+ . . . , 
x6,x8, xl,,,. . . = 0(p3) or higher order, 

x,=x,=x,= ... = o .  
The equilibrium values of the mass, area and volume ratios, calculated from 
(l?), (20), (16) and (30), are 

WZ, = 1~0000+0~3375/3+0~1513~2+0*08096~3+.  . ., 
s = 1 ~ 0 0 0 0 + 0 ~ 0 2 8 1 3 ~ 2 + 0 * 0 1 4 1 6 ~ 3 + 0 ~ 0 0 8 1 5 3 ~ 4 + .  . ., 1 (31) 
w = 1.0000 + 0.02109/32+ 0*01025p3+ 0*005828p4+ . . . . 

The higher-order terms in these approximations for x,, m, s and w decrease 
rapidly when /3 is small. The successive approximations for x2 and the second- 
order approximation for x4 are plotted in figure 2. The value of x2 is seen to grow 
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rapidly when /3 is greater than about 2. We see from the graph that the power 
series for x2 appears to be most useful when ,8 is less than about 1.2 or 1.3. ' 

Thus, for small Weber numbers, one can calculate the equilibrium values of x,, 
which determine the equilibrium cavity shape, and the equilibrium values of the 
shape-dependent quantities m, s and w. The equilibrium shape is described by 
the functionf, defined in ( 1 )  as f = 1 + Sx, P,(cos 0). By means of (30) the shape 
function f is given to second order in p by 

f = 1 - (0~1875/3+0~04731~2)P2+0~02612/32P4. (32) 

The equilibrium shape described by this equation is plotted in figure 3 for a 
Weber number of p = 1.20. (The numbers appearing on this graph refer to the 
pressure distribution at  the cavity surface and will be explained later.) The 
equilibrium shape is seen to have front and back symmetry, that is, symmetry 
about a plane passing through the centre of the cavity, perpendicular to the direc- 
tion of translation. This symmetry results from the fact that all odd co-ordinates 
x3, xg,. . . are zero. 

1.00 i.nn Normalized 

Axis of 
symmetry-I 

I 

FIGURE 3. Equilibrium shape and pressure distribution at  the surface of a translating 
cavity with a Weber number /3 = 1.20. 

The equilibrium radius 

Once the cavity shape is known as a function of ,8, the equilibrium radius can be 
obtained from (25) .  Let us assume that the cavity contains n moles of an ideal 
gas under isothermal conditions. The equilibrium gas pressure is then given by 
pge = n B T / V  = 3nBT/4nR:w, where B is the universal gas constant and T is 
the absolute temperature. Substituting this result and (29) into (25), one finds 
that the equilibrium radius corresponding to given values of n and ,8 is given by 
solutions of the equation 

mpa 3nBT 2as 

4R, 4nR; Re 
-+- = -+Pow. (33) 
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The terms on the left represent an outward pressure that tends to enlarge the 
cavity. As a result, the equilibrium radius of a translating cavity is greater than 
the equilibrium radius of the same cavity at rest. 

For example, let us consider a stationary, spherical cavity in water with Po = 0 
and with an equilibrium radius of 5.00,~. If this cavity is given translational mo- 
tion so that its Weber number becomes p = 1.00, then its equilibrium radius is 
increased to 5 .42 ,~~  or 1.084 times its original value. The equilibrium volume is 
increased to 1.32 times its original value, and the velocity corresponding to 
/3 = 1-00 and Re = 5.42,~~ is ue = 368cm/sec. 

A translating cavity can have an equilibrium radius even if it  is empty of gas. 
If a quantity a is defined as 

then (33) may be written for the empty cavity case, n = 0, as 

a = Po Re/2a, (34) 

01 = ( T @ / ~ w )  - (s/w) 

= - 1~0000+0~1250~+0~03516~2+0~01258,83+0~005774~4+ . . . . (35) 

This equation relates values of a and /? that correspond to an empty cavity. The 
value of ,8 lies within the useful range of this power series when Po is negative. 
For example, if a equals -0.77, then the corresponding empty cavity Weber 
number is 1.20. In  other words, the cavity whose shape is shown in figure 3 
could be empty of gas if the hydrostatic pressure were negative and related to 

Two dimensionless quantities introduced in this chapter are the Weber 
number p = pu," Re/cr and the quantity a = Po Re/2a. The Weber number is pro- 
portional to the ratio of the inertial pressure ipuf  and the pressure 2a/Re related 
to surface tension. The quantity a is the ratio of the hydrostatic pressure Po and 
the pressure related to surface tension. 

Re by PoR,/2a = - 0.77. 

Pressure distribution at the surface 

The pressure in the liquid about an equilibrium cavity may be calculated from 
the Bernoulli equation 

p = P o - l  2P v +Paq5/at. 

The partial derivative a$/at is taken at a fixed point in space. The value of q5 at  a 
point fixed with respect to the moving cavity is constant for the equilibrium 
case, and, therefore, the partial time derivative at  a point moving with the cavity, 
written (aq5/at),, is zero. Because the cavity moves in the z-direction with velo- 
city u, these two partial derivatives are related by 

From this last expression one obtains aq5/at = - u(aq5laz). Therefore the pressure 
in the liquid is given by 

(a$/at), = o = (a$/at) + u(aq5laz). 

( p  - p0)/p = - 4 ~ -  uaq5/az. 

The values of v 2  and aq5/az may be calculated from (2) along with the values of 
b,, and the equilibrium values of x,. In  this manner the pressure distribution in 
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the liquid at the cavity surface has been calculated for the equilibrium case 
through first order in /3. The result may be written as 

where p,(@ is the pressure in the liquid at  the cavity surface. The pressure distri- 
bution at the surface has been calculated from (36) for a Weber number p = 1.20, 
and the values of the normalized pressure (p ,  - Po)/ipuz are indicated as a func- 
tion of angle in figure 3. 

4. Stability of the equilibrium state 
The stability of the equilibrium size and shape will be examined by consider- 

ing the energy involved in displacements of R and x, from their equilibrium 
values. The displacements of R and x, will be made so that the momentum G, 
which is a constant of the motion, is held fixed. First, it is convenient to trans- 
form the equations of motion, (21). These equations, in their present form, are 
written in terms of functions of the generalized co-ordinates R and x, and the 
translational velocity u. It is possible to rewrite these equations in terms of R and 
x, and the constant momentum G, rather than u. 

This transformation is effected by a method known as Routh’s procedure 
(Goldstein 1950, p. 219). A function called the Routhian is defined as 

9 = L-Gu. (37) 

The equations of motion for R and x, are then given by Lagrange’s equations, but 
with the Routhian playing the part of the Lagrangian, 

(”) ;: 0. 0 at a& 
a aa aw 

- - --= 

It is an essential part of this method that 92 be written explicitly as a function of 
the constant momentum G, rather than u. 

Using L = T- U ,  equations (ll),  (18) and (37), and recalling that a, is the 
same as u, one obtains 

where 

and where the symbol 2; indicates that the summation does not include i = 1. 
Equation (39) gives the Routhian as a function of the generalized co-ordinates 
qi (i $. 1) and generalized velocities qi (i =k 1) and the translational momentum 
G .  By analogy with the role played by U in the Lagrangian, the quantity @ is 
interpreted as an effective potential energy for the translating cavity. 
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The total energy of the cavity E = T + U may also be transformed to give 

The first term of E is the kinetic energy associated with change of R and x,. The 
second term is the effective potentialenergy. Here it is againseen that the kinetic 
energy of translation contributes to the effective potential energy. 

Equations for the equilibrium situation are obtained from (38) and (39) with 
R and x, held constant and are 

m/aR = 0;  aaqax, = 0. (43) 

Taking the indicated derivatives of @, and replacing G by its equivaIent a t  
equilibrium, M,,u,, one easily verifies that these equilibrium equations are iden- 
tical to those obtained from the original Lagrangian. The equilibrium equations 
determine an extremum of the potential 0. The equilibrium will be stable if this 
extremum is a minimum. Since CD is the total energy of the equilibrium state, a 
stable equilibrium corresponds to a minimum of the total energy. 

Eigenvalues of the effective potential energy 

The effective potential energy may be expanded about its equilibrium value as 

CD = Q?,+ g 2’ (aw/apiapj)e 8qi8qj+ . . . , (44) 
i j  

where the partial derivatives are to be evaluated for the equilibrium configura- 
tion. The quadratic form appearing in (44) represents the effective potential 
energy change for any displacement from the equilibrium configuration. The 
value of CD at equilibrium will be a minimum, and the equilibrium stable, if this 
quadratic form is positive for all such displacements. The quadratic form can be 
represented by the symmetric matrix whose elements are 

= (a2@/aqiaqj)e. (45) 

The eigenvalues A, of this matrix are real because the matrix is symmetric. If 
the corresponding eigenvectors are denoted dp;, then the quadratic form can be 
written in the diagonal representation as X,h,(8qL)2. It is seen from this expres- 
sion that the quadratic form is positive and the equilibrium stable if all eigen- 
values A, are positive. Our goal is to obtain these eigenvalues. First, however, we 
must calculate the matrix elements Qij. One is reminded here that the subscripts 
i, j do not assume the value one. 

If the gas in the cavity behaves as an ideal gas under isothermal conditions, 
then @ is given by (411, (14), (15), (18) and (19) as 

47r + 47rR2m + - R3Pow - c In R ~ w ,  @=-  
3G2 

4npmR3 3 

where c = pgV is a constant. The momentum and gas content of the cavity are 
held fixed. The elements aij are obtained by taking second derivatives of @ and 
evaluating them for the equilibrium state determined by (43). For this purpose 
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one needs the equilibrium values of x,, m, s and w, given by (30) and (31). The 
calculations have been extended to the order in p sufficient for later calculations. 
The first two diagonal terms are given to first order in p by 

Oo0 = 47744 + 6c~  + $p), 
QZz = 4?~1~R,2(0-8000 + 0.3600p). 

The third diagonal will be used to second order, and is 

@,, = 4 7 ~ ~ R 3  1.429 - 0'2755p- 0*06417p2). 

The remaining diagonal elements are given to zero order by 

@%,(n 2 2) = 47frTR3n + 2) (n - l)/(2n + 1). 

The off-diagonal elements are, to first order in p, 
QO2 z= - ~ ~ I T R , (  7 + 3a) p, 

@n-.l,+l(n 2 3) = $ngR:[n(n+ 1)/(2n- 1)(2n+3)]p.  

All other off-diagonal elements are of second or higher order in p. 
It is noted that all off-diagonal elements are at  least of order p, while the diago- 

nal elements consist of terms of zero order as well as terms of order p and higher. 
This fact allows one to calculate the eigenvalues of the matrix Qij as a series of 
terms of increasing order in p. For small values of p, the eigenvalues may be 
approximated by the first few terms of these series. The following notation will 
be adopted: Qij is written 

Qij = + 0:;) + @g + . . . , 
where @$) is the contribution to Qij of order pn. 

The eigenvalues are given by solutions A, of the equation det ( Qij - haij) = 0,  
where Sij is the Kronecker delta. It can be shown that the eigenvalues are given to 
second order in /3 by 

Eigenvalues have been calculated from (47) through the order in ,9 needed in the 
following section. The first two eigenvalues are given to first order by 

A, = 1 6 7 ~ g ( l +  3 4 2  + 3p/16), 

A, = 4~gRz(O.8000 + 0.3600p). 

The third eigenvalue is given to second order by 

A, = 4ngR:(1.429 - 0'2755p- 0*1406p2). 

The higher eigenvalues are given to zero order by 

A,(% > 2) = 4nrR3n + 2) (n- l)/(2n + 1). 

The equilibrium state will be stable when all of these eigenvalues are positive. 
If the quantity a = P&,/2a is positive, then all eigenvalues are positive, and the 
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equilibrium is stable for small values of p. A principal conclusion, therefore, is 
that stable solutions for the equilibrium cavity size and shape do exist for a range 
of Weber numbers near the value zero. 

Instabilities of the equilibrium state 

The equilibrium will be unstable if any eigenvalue is negative. Two such insta- 
bilities have been found for this problem. One form of instability occurs when the 
hydrostatic pressure is negative. Then, when the equilibrium radius exceeds a 
critical value, the radius will grow without bound; therefore, this instability is 
one that involves the size of the cavity rather than its shape. The critical radius 
a t  which the instability occurs is a function of the negative hydrostatic pressure. 
Such an instability is well known for the case of non-translating gas bubbles, and 
will occur when the negative pressure is related to the equilibrium radius by 
lPol 2 4a/3Re. The instability occurs for translating cavities when A, equals 
zero, or 

From the definitions of a and p, equations (34) and (29), the condition for this 
instability becomes 

(48) a =  -2-1 
3 8 P .  

Po < 0;  (POI 2 (4r/3Re) + (pu",4). 

A second instability predicted by these results will occur when A, becomes zero. 
The second-order expression for A, becomes zero when ,5 equals 2.34. Therefore, 
according to this approximation, the equilibrium cavity is unstable when the 
Weber number exceeds 2.34. Because a! does not appear in the expression for A,, 
this instability is independent of the hydrostatic pressure. The displacement 
corresponding to the eigenvalue A, is given by the third eigenvector, which con- 
sists primarily of a displacement &,. Therefore, this instability is associated with 
a change of x, and involves the shape of the cavity, rather than its size. No other 
instabilities have been found within this range of values of p. Values of A, and 
A, are shown in figure 4. 

The range of stability 

Finally, let us consider the range of parameters for which stable equilibrium 
states exist. The values of Re and u, for which p equals the approximate stability 
limit 2.34 are shown in figure 5. This line is calculated from the definition 
p = pu,2Re/a, using /3 = 2.34 and the values for water, CT = 73dynes/cm2 and 
p = l.0g/cm3. All equilibrium states represented by points lying below this 
line have a stable shape. 

The values of a and ,8 that correspond to equilibrium cavities are shown in 
figure 6. All points above curve (1) represent equilibrium cavities that contain gas. 
A point on curve (1) represents the limiting case of an equilibrium, empty cavity. 
Curve (1) is calculated from equation (35). Points below curve (1) do not repre- 
sent equilibrium states, for they would correspond to a negative amount of 
gas in the cavity. The equilibrium states are stable when a! and ,8 are within two 
stability limits. The limit for size stability is given by (48) and is indicated by 
curve (2) in figure 6. The limit for shape stability is given by p = 2-34 and is indi- 
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cated by curve (3). The stability limits divide the range of equilibrium solutions 
in figure 6 into four regions. Points in region I represent stable equilibrium solu- 
tions. Equilibrium cavities represented by points in region I1 have an unstable 
size and will grow without bound. Points in region I11 represent equilibrium 
cavities that are unstable in shape. There are no equilibrium states in region IV. 

2.0 

I I I I I 1 -  

- - 

IZ = 2, first order 

FIGURE 4. Eigenvalues A, and A, of the effective potential energy as a function 
of the Weber number. 
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FIGURE 5. The range of u, and R, for shape stability. 
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It is seen from figure 6 that stable empty cavities exist between the intersec- 
tions of curve (1) with curves (8) and (3), at the points 01 = - 0.80, ,8 = 1.08 and 
a! = -0.17, = 2.34. For a given negative hydrostatic pressure the possible 
stable equilibrium radii of empty cavities lie between Amin = - 0*17(2c/P0) 
and A,,, = - 0.SO(8c/Po). The smaller radius corresponds to p = 2.34, the limit 
for shape stability; the larger radius corresponds to p = 1.08, the limit for size 
st>ability. For example, if Po is - 0.1 bar, stable empty cavity equilibrium radii 
lie between 2-5 and 12.0,~. These results for translating empty cavities differ 
greatly from the properties of stationary empty cavities, which have an 
equilibrium radius when Po is negative. This equilibrium radius is given by 
Re = -2v/Po and is always unstable. There is no stable empty cavity equili- 
brium for a stationary cavity. 

FIGURE 6. The range of a and p for stable and unstable equilibrium cavities. I, stable 
equilibrium; 11, unstable size; 111, unstable shape; IV, no equilibrium states. 

5. Conclusions 
A principal conclusion of this study is that translating cavities have an equi- 

librium size and shape for a range of values of the Weber number p. The equili- 
brium shape is approximately an oblate spheroid, and the equilibrium radius is 
greater than it would be if the cavity were stationary. This increase in radius 
occurs because the average pressure in the liquid surrounding a translating cavity 
is reduced. 

A second conclusion is that the equilibrium states are stable for a range of 
values of a! and ,8. Beyond this range an equilibrium state may become unstable 
in either of two ways. 
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(i) The equilibrium shape becomes unstable when the Weber number exceeds 
the approximate value 2.34. This limiting value was obtained by extrapolation 
of a second-order expression in p and, therefore, is not expected to be highly 
accurate. The range of velocities at  which the cavity shape is stable is quite 
large when the equilibrium radius is small. For example, according to figure 5, a 
cavity with a radius of one micron will have a stable shape for velocities up to 
about 1300 cmlsec. 

(ii) The equilibrium radius is unstable when the approximate inequality 
a < - f - Qp is satisfied. This instability occurs only when Po is negative. Empty 
cavities may lie within the stable range of a and /3 if Po is negative. 
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